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A Remark on Papers by Pixton and Oliveira: 
Genericity of Symplectic Diffeomorphisms of S 2 with 
Positive Topological Entropy 
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We prove the existence of an open and dense subset of maps f ~ D i f f ~ ( S  2) 
which have positive topological entropy. It follows that these maps have 
infinitely many hyperbolic periodic points and an exponential growth rate of 
hyperbolic periodic points. The proof is an application of Pixton's theorem. 
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Topological entropy characterizes the total exponential orbit complexity of 
a map with a single number (see ref. 4 for definitions and properties). 
Topological entropy, especially in low-dimensional cases, provides a wealth 
of qualitative structural information about the system, including the 
growth rate of the number of periodic orbits, ~2) existence of large horse- 
shoes, r and the growth rate of the volume of cells of various dimen- 
sions. r Any map which possesses a horseshoe, i.e., some power of the 
map is topologically conjugate to a Bernoulli shift, has positive topological 
entropy. Katok t2) has shown that the converse is true for surface diffeo- 
morphisms. Hence surface diffeomorphisms having positive topological 
entropy exhibit very stochastic behavior on some subset of the surface--  
possibly a set of Lebesgue measure zero. Thus, the stochastic behavior of 
a surface diffeomorphism with positive topological entropy may not be 
physically observable. 

In this note, we observe that there exists an open and dense subset of 
C ~ symplectic (area-preserving) diffeomorphisms (symplectomorphisms) 
on S 2 having positive topological entropy, and we observe a related result 
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for symplectomorphisms of the 2-torus. The symplectic hypothesis is essen- 
tial, for the Morse-Smale diffeomorphisms of S 2 form an open subset of 
diffeomorphisms with zero topological entropyJ 9) The proofs are easy 
applications of Pixton's Theorem ~8~ and Oliveira's Theorem. ~7) 

Let M 2 denote a C ~ compact surface�9 A symplectic form (or area 
form) co on M z is a smooth positive differential two-form. Denote by 

�9 o O  "~ Diff,o(M-) the set of symplectomorphisms of M 2 equipped with the 
Whitney topology, i.e., the diffeomorphisms f of M 2 which preserve the 
symplectic form co, i.e., f ' c o  = co. 

We now state our main result: 

Theorem 1. There exists an open and dense subset of maps 
f ~  Diff~'(S z) which have positive topological entropy. 

Theorem 1 is also true for Diff2(S 2) or even Diff~+~(S2). Applying 
Katok's result ~2) that a surface diffeomorphism with positive topological 
entropy contains horseshoes (which carry most of the entropy) to 
Theorem 1 yields the following corollary: 

Corol lary  1. There exists an open and dense subset of maps 
f e  Diff~(S 2) which have infinitely many hyperbolic periodic points and an 
exponential growth rate of (hyperbolic) periodic points. 

Proof of Theorem 1. The heart of the proof is the following theorem 
of Pixton: 

Theorem (PixtonCS~). A residual subset of ' ~ 2 Diff~,(S) has the 
property that the stable and unstable manifolds of every hyperbolic 
periodic point intersect transversely. 

Note that Pixton's Theorem makes no claim about the existence of 
hyperbolic periodic points. The openness statement in Theorem 1 
immediately follows from the C ~ structural stability of hyperbolic setsJ 1~ 

To prove the density statement, let f :  S 2--, S 2 be a symplecto- 
morphism having the generic property in Pixton's Theorem, i.e., that every 
hyperbolic periodic point has transverse homoclinic points. Choose a 
neighborhood UcDi f f~ (S  2) o f f .  While the map f n e e d  not have a fLxed 
point, it follows from the Lefschetz fixed-point theorem that f has a 
periodic point xJ ~ If x is hyperbolic, by hypothesis the stable and unstable 
manifolds of x intersect transversely and thus f has positive topological 
entropy. I ~  Suppose x is elliptic (or parabolic). By studying the Birkhoff 
normal symplectic perturbations, Moser t6~ showed that one can find a 
symplectomorphism g ~ U having a hyperbolic periodic point y near x. 
Moser's result was actually stated for real analytic maps, but several 
authors (see, for instance, ref. 8) have observed that a simple modification 
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of his argument yields C r versions of the result for all r. Since hyperbolic 
period points are C ~ structurally stable, Pixton's Theorem yields a sym- 
plectomorphism h e U with a hyperbolic fixed point z near y such that the 
stable and unstable manifolds of z intersect transversely. Hence h has 
positive topological entropy. | 

Oliveira (7) generalized Pixton's Theorem to symplectomorphisms of 
the 2-torus T 2. The extension to surfaces of higher genus is unknown. The 
same argument as in Theorem 1 would prove the existence of an open and 
dense subset of symplectomorphisms of T 2 which have positive topological 
entropy, provided one knew that a dense set of symplectomorphisms of T 2 
has a periodic point. This is a weak form of the C ~ closing lemma on T 2 
and has not yet been proved. The irrational translation on T 2 is an 
example of a symplectomorphism of T 2 without periodic points. 
However, it follows from the Lefschetz fixed-point theorem (t2) that any 
diffeomorphism f :  q]-2 ~ T 2 for which f* :  H ] ( T  2) ~ H l ( T  2) does not have 
+1 as an eigenvalue has a fixed point, where H~(T 2) denotes the first 
cohomology group of T 2. The set of symplectomorphisms with this 
property clearly forms a large open set of symplectomorphisms. 

Theorem 2. In the open set of diffeomorphisms f :  T 2 ~  T 2 for 
which f * :  Ht(T~)~H~(T 2) does not have +1 as an eigenvalue, there 
exists an open and dense subset of symplectic diffeomorphisms which have 
positive topological entropy. 

It follows that in every connected component of Diff~ with one 
exception, there exists an open and dense subset of symplectic dif- 
feomorphisms which have positive topological entropy. 

It should be pointed out that in many cases, there already exists a 
result stronger than Theorem 2. Let A be an element of SL(2, Z) and f a 
diffeomorphism of T 2 inducing A in homology. Then one has a short list 
of possibilities: 

1. Both eigenvalues of A are real and of modulus different from 1. In 
this case it easily follows from Manning's entropy inequality (5) between 
entropy and the log of the spectral radius of A that f always has positive 
topological entropy. 

2. Eigenvalues of A are roots of unity of order 1, 2, 3, 4, or 6. If, as 
in Theorem 2, we exclude 1 as an eigenvalue, we are left with only finitely 
many conjugacy classes in SL(2, Z) for which Theorem 2 is nontrivial. 
These classes are just conjugacy classes of elements of finite order in 
SL(2, Z). In other words, Theorem 2 yields new information for finitely 
many connected components of D/ffco(T2). 
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We leave the reader with two intriguing open questions: 

1. Is it true that an open and dense set of  symplectomorphisms on 
every surface, or  more generally, every smooth compact  symplectic 
manifold has positive topological ent ropy? 

2. A more refined invariant measuring the complexity of  the orbit 
structure for a symplectic map is the measure-theoretic entropy (with 
respect to the Lebesgue measure induced by the symplectic form). Metric 
entropy gives the exponential growth rate of  the statistically significant 
orbits. I f  a map has positive metric entropy, then it exhibits very 
stochastic behavior on a set of  positive Lebesgue measure. Recall that  a 
map with positive topological entropy may exhibit stochastic behavior on 
a set of  Lebesgue measure zero. Is it true that an open and dense set of  
symplectic diffeomorphisms on every surface, or more generally, every 
smooth compact  symplectic manifold has positive metric en t ropy?  The 
K A M  theorem implies that the set of  ergodic symplectomorphisms is not  
dense. 
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